SECTION 6
COOLING SYSTEM

- Alarmstats ... 6-11
- Antifreeze .. 6-3
- Blower Belt Air Cylinder 6-15
- Blower Gear Box 6-13
- Cold Weather Operations 6-2
- Coolant Filters - General 6-5
- Coolant Filter - Spin-On (Optional) 6-8
- Coolant Recovery System 6-10
- Coolant Requirements 6-3
- Corrosion Inhibitors 6-4
- Draining Cooling System 6-7
- Filling Cooling System 6-8
- Hose Inspection 6-2
- Preventive Maintenance 6-2
- Radiators ... 6-11
- Service Tools 6-19
- Shutters and Shutterstats 6-11
- Shutterstat Air Filter 6-12
- Silicate Dropout 6-5
- Specifications 6-18
- Temperature Control Components 6-1
- Testing Antifreeze Solutions 6-2
- Water ... 6-3
- Water Pump Seal 6-11
- Service Bulletin Page
COOLING SYSTEM

One radiator is mounted on each side of the coach above the engine. Cores are of fin and tube construction. Dual centrifugal blowers are belt driven from the engine crankshaft through a gear box. They pull outside air through the radiators into a sealed, insulated blower compartment when the air operated, thermostatically controlled shutters are open.

When engine coolant is below normal operating temperature the shutters are automatically closed. With shutters closed, no air is pulled across the radiators and horsepower required to drive the centrifugal blower becomes significantly reduced.

The blower gear box includes a sight gauge for checking lubricant level and an easily accessible oil filler tube. Belt tension is maintained through an automatic, air controlled belt tightener.

The surge tank is mounted in the upper blower compartment. The coolant filler neck and pressure release valve are mounted behind the access door on the right rear side of the coach. A coolant level check can be done rapidly by means of a sight glass installed on the surge tank. Thermostats and alarmstats are provided at the front of each cylinder head.

The function of the coolant is to absorb the heat which develops as a result of the combustion process in the engine. In addition, the heat absorbed by the oil is removed by the engine coolant in the oil cooler.

The engine water pump circulates coolant through the engine oil cooler, block, cylinder heads and aftercooler. From the aftercooler it flows through the thermostats to the radiators and down to the water pump completing the cycle. Anything that interferes with this process of heat transfer can cause engine components to overheat, often resulting in serious engine damage. See figure 6-1.

COOLANT TEMPERATURE

The heat-dissipating capacity of the V-92 Series engine cooling system and related components must be sufficient to prevent the coolant-out temperature from rising above the maximum allowable coolant-out temperature limit of 210°F (98.9°C).

This temperature must not be exceeded under any engine operating conditions, regardless of altitude, type of coolant used, or cooling system condition. Exceeding these limits can result in malfunction or serious engine damage.

TEMPERATURE CONTROL COMPONENTS

The engine is designed to operate with thermostats which, combined with a radiator, regulate coolant temperature. Radiator shutters, and fans, are used to help control coolant temperature. These “add on” cooling system components
MC-9 MAINTENANCE MANUAL

must operate in proper sequence to prevent coolant temperature instability and/or engine overheating. An improper operating sequence can also have a detrimental effect on the life of the "add on" components as well.

The following chart gives the nominal temperature settings for the 1982-83 Coolant thermostats and shutoff controls, along with standard and optional thermostat settings. These settings should not be exceeded, under any engine operating condition, regarding the coolant inlet and outlet temperature, or cooling system condition. Exceeding the settings will unnecessarily increase the engine coolant and lubricating oil temperature.

NOTE: Coolant temperature instability will result from improper component operating sequence.

![Figure 6-2: Nominal Settings For Coolant Temperature Controls.](image)

The major components of the cooling system are the coolant, radiators, blower gear box and surge tank. These components, as well as the minor ones, are covered in more detail later in this section.

HOSE INSPECTION

Swollen, cracked or worn out hoses or loose hose connections are frequent causes of cooling system problems. Serious overheating is often caused by old hose collapsing or from deteriorated rubber shedding from hoses and clogging the cooling passages.

Connections should be inspected periodically and hose clamps tightened. Replace any hose found to be cracked or swollen. When installing a new hose, clean pipe connections and apply a thin layer of a non-hardening sealing compound. Replace worn out clamps or clamps that pinch hoses.

TESTING ANTIFREEZE SOLUTIONS

Always test solution before adding water or antifreeze. Engine should be warmed to operating temperature, fill and empty tester several times before using, and ensure that tester is clean inside and out.

If a coolant tester is used, replace the element every 500 hours or 20,000 miles (32,000 km).

Commercial cooling system cleaners of alkaline or acid type may be used. Exercise extreme caution and follow the manufacturer's recommendations when using these types of cleaners.

WATER

Whether or not drinking quality or not, any water will produce a corrosive environment in the cooling system, and the mineral content may permit scale deposits to form on internal cooling system surfaces. Therefore, water selected as a coolant must be properly treated with inhibitors to control corrosion and scale deposition.

To determine if a particular water is suitable for use as a coolant when properly treated, the following characteristics must be considered: the concentration of chlorides and sulfates, total hardness, and total dissolved solids.

Chlorides and/or sulfates tend to accelerate corrosion, while hardness (percentage of magnesium and calcium salts) is badly classified as carbonates; cause deposits of scale. Total dissolved solids cause scaling deposits, sludge coatings. Chlorides, sulfates, magnesium and calcium are among the materials which make-up dissolved solids. Water within the limits specified in Table 1 (figure 6-3) is satisfactory as an engine coolant when properly treated. The procedure for evaluating water intended for use in a coolant solution is shown in Table 2.

ANTIFREEZE

When freeze protection is required, use an antifreeze that meets the GM 6038M formulation, which limits antifreeze to 1.0% maximum, or an equivalent formulation meeting the 0.75% maximum silicate and GM 1996B performance requirements.

Solutions of less than 30% do not provide adequate corrosion protection. Concentrations over 67% adversely affect freeze protection, heat transfer rates, and scale stability. A 50% antifreeze solution is normally used as factory-fill.

Ethylene glycol base antifreeze is recommended, because amyl or butyl alcohol base antifreeze is not recommended because of its effect on the non-metallic components of the cooling system and because of its low boiling point. Methoxy propanol base antifreeze is not recommended due to the presence of fluorostainer seals in the cooling system.

The inhibitors in antifreeze solutions should be replenished with a non-chromate corrosion inhibitor supplement when indicated by testing the coolant. Engine coolant should be checked at approximately 500 hour or 20,000 mile intervals. (See Coolant Testing, below.)

Antifreeze solutions should be used year-round to provide freeze protection in the winter, boil-over protection in the summer, and a stable environment for seals and hoses in the cooling system of the engine. (See Figure 6-4.)
MC-9 MAINTENANCE MANUAL

Date: 1-1-89. **Page**: 1-6-4

TEMPERATURE:

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>70</td>
<td>158</td>
</tr>
<tr>
<td>80</td>
<td>176</td>
</tr>
<tr>
<td>90</td>
<td>194</td>
</tr>
<tr>
<td>100</td>
<td>212</td>
</tr>
</tbody>
</table>

ANTI-FREEZE CONCENTRATION (%)

- **Freezing Point**: 1.8
- **Boiling Point**: 303

Figure 6-4: Freezing and Boiling Temperatures of Coolant (at sea level).

CORROSION INHIBITORS

A corrosion inhibitor is a water-soluble chemical compound which protects the metallic surfaces of the cooling system against corrosion attack. Some of the more commonly used corrosion inhibitors are chromates, borates, nitrates, nitrites, and solvents. Soluble oil (not recommended as a corrosion inhibitor) is used as a water treatment, but it is not recommended for use in cooling systems. The importance of proper inhibition cannot be overstated. A coolant which has insufficient inhibitors, the wrong inhibitors, or — worse — no inhibitors at all will result in the formation of rust and scale deposits within the cooling system. Rust, scale, and mineral deposits can wear out water pump and cylinder head gaskets and cause overheating. Over a period of weeks or months, liner scuffing, scoring, piston seizure, and cylinder head cracking are the inevitable results.

An improperly inhibited coolant can also become corrosive enough to "eat away" coolant passages and seal ring grooves and cause coolant leaks to develop. If sufficient coolant accumulates on top of a piston, a hydrostatic lock can occur while the engine is being started. This, in turn, can result in a bent connecting rod.

An improperly inhibited coolant can also contribute to cavitation erosion. Cavitation erosion is caused by the collapse of bubbles (vapor pockets) formed at the cool side of an engine component. The collapse results from the pressure differential in the liquid caused by the vibration of the engine part. As bubbles collapse, they form pin points of very high pressure. Over a period of time, the repeated explosion of millions of tiny bursting bubbles can wear away (erode) internal engine surfaces.

Components such as water pump impellers and cylinder liners are especially susceptible to cavitation erosion in extreme cases. These surfaces can become so deeply pitted that they appear to be spongy, and holes can develop completely through the component. Non-chromates — Non-chromate inhibitors (borates, nitrates, nitrates, nitrites, etc.) provide corrosion protection in the cooling system with the basic advantage that they can be used with either a water or water-and-antifreeze solution.

Chromates — Sodium chromate and potassium dichromate are two of the most commonly used water system corrosion inhibitors. Care should be exercised in handling these materials due to their toxic nature.

Chromate inhibitors should not be used in antifreeze solutions. Chromate hydroxide, commonly called "green slime," can result from the use of chromate inhibitors with antifreeze. This material deposits on the cooling system passages, reducing the heat transfer rate and resulting in engine overheating. Engines which have been chrome treated will not accept calcium antifreeze, but must be chemically cleaned before the addition of antifreeze. A commercial heavy-duty descaler should be used in accordance with the manufacturer's recommendations for this purpose.

SOLUBLE OIL — Soluble oil is not recommended as a corrosion inhibitor. It has been used as a corrosion inhibitor for many years. It has, however, required very close attention relative to the concentration level due to adverse effects if the concentration exceeds 1% by volume. For example, 1.25% soluble oil in the cooling system increases fcd temperature 6% and 1.50% concentration raises fcd temperature up to 15%.

INHIBITOR SYSTEMS AND ADDITIVES — An inhibitor system is a combination of water soluble compounds which provide corrosion protection. pH control, and water softening ability. pH Control is maintained with antifreeze. The water softening ability prevents formation of mineral deposits. Inhibitor systems are available in various forms, such as coolant filler elements, liquid and liquid-inhibitor additives, and as integral parts of antifreeze.

Commercially packaged inhibitor systems are available which can be added directly to the cooling system. Both non-male and non-chromate systems are available, and care should be taken regarding inhibitor compatibility with other coolant constituents.

Non-chromate inhibitor systems are recommended. These systems can be used with either water or water-and-antifreeze solutions and provide excellent corrosion protection. pH Control is maintained with antifreeze. Most non-chromate inhibitor systems offer the additional advantage of inhibiting the water to prevent cavitation erosion. Non-chromate inhibitor systems are available which can be added directly to the cooling system.

MC-9 MAINTENANCE MANUAL

Company: Texas (1) BASF Wyandotte (1)

Product: 2005 (was JC-04) 241-1

International Harvester (1)

Product: I.H. Antifreeze

Old World Trading Co. (1)

Product: Full Force Advance

Northern Petro-Chemical (2)

Product: All Weather (NPC 220)

Dow Chemical Canada (3)

Product: 731

Houston Chemical Corp. (4)

Product: 701

1. Generally used.

2. Generally available within 750-mile radius of Chicago

3. Generally available in Canada

4. Generally available in Mexico

5. Not recommended in Canada

COOLANT FILTERS — GENERAL

Replaceables are available with various coolant inhibitor systems. Compatibleness of the element with other ingredients of the coolant solution cannot always be taken for granted.

Problems have developed from the use of the magnesium separator plate used by some manufacturers in their coolant filters. The magnesium plate will be attacked by solutions which are not compatible with the metal in the cooling system. The dissolving magnesium will be deposited in the hottest zones of the engine where heat transfer is most critical. The use of an aluminum or zinc support plate in preference to magnesium is recommended to eliminate the potential of this type of deposit.

High-chlorine coolants will have a detrimental effect on the water-softering capabilities of systems using on-exchange resins. Accumulations of calcium and magnesium ions removed from the coolant and hard component dust and debris can be released into the coolant by a regenerative process caused by high-chlorine-content solutions.

SILICATE DROPOUT

Excessive amounts of chemicals in the engine coolant can cause silicate dropout, which creates a gel-type deposit that reduces heat transfer and coolant flow. Silicate dropout may also occur in coolants using extremely hard water and/or unusually high operating temperatures. The gel takes on the color of the coolant solution in the wet state, but appears as a dry deposit when dry. Although gel is non-abrasive, it can pick up solid particles in the coolant and become a gritty, abrasive deposit that can cause excessive wear of water pump seals and other cooling system components.

If it is suspected that a coach cooling system has a gel problem caused by engine overheating or coaches overheating, first try to remove the gel in its "wet" condition. Use an oil skimmer (Alusor 2001 or equivalent) as directed by the manufacturer, so that the silicate gel is not allowed to dry. If using the cleaner does not pare it, repeat the procedure. If mud is left from the cleaning process, this mud must be removed to prevent gel formation. If gel is allowed to remain in the system, it will result in increased resistance to water flow. The gel is caused by the effect of the coolant on the cylinder block and water jackets. Safety glasses and protective gloves should be worn. Do not flush engine system with coolant solutions because damage can occur to both metallic and non-metallic components. The following recommendations are made to prevent silicate dropout:

- Use antifreeze that meets GM-6038M formulation which limits the amount of silicate to 0.1% maximum.
- Use antifreeze without concentration required for freeze protection in your operating area, but do not use more than 6% antifreeze. Antifreeze concentrations should be kept to a minimum. Safety glasses and protective gloves should be worn. Do not flush engine system with coolant solutions because damage can occur to both metallic and non-metallic components.

- Use antifreeze without concentration required for freeze protection in your operating area, but do not use more than 6% antifreeze. Antifreeze concentrations should be kept to a minimum. Safety glasses and protective gloves should be worn. Do not flush engine system with coolant solutions because damage can occur to both metallic and non-metallic components.

NOTE: Over-inhibiting antifreeze solutions can cause silicate dropout. Always follow the supplier's recommendations on inhibitor usage and handling.

THERMAL OVERHEATING

All lubrication oil temperature controls are now standard equipment. In the event of a loss of heat transfer, the control will shut off the engine oil flow. If the engine is hot, the control will shut off the fuel flow. If no heat transfer is caused, the control will shut off the coolant flow. The control is designed to protect the engine from overheating.

REFRIGERANT

All refrigerants are required to be used in the system. If the refrigerant is not used, the system will not function. The refrigerant must be compatible with the system, and it must not contain any contaminants. The refrigerant must be checked periodically to ensure that it is not contaminated.

ELECTRICAL SYSTEM

All electrical systems must be inspected periodically to ensure that they are functioning properly. This includes checking the battery, alternator, and wiring connections. It is important to check the system for any loose connections, corroded terminals, or damaged wires. These issues can lead to the failure of the electrical system and affect the performance of the machine.
MC-9 MAINTENANCE MANUAL

TRAINING COOLING SYSTEM

The cooling system may be completely or partially drained by using the following procedures.

CAUTION: After draining the cooling system, attach a suitable tag to the steering wheel indicating that the cooling system is dry.

1. To drain the entire system, leave the two gate valves open and proceed with the following (see figures 6-5, 6-6, and 6-7):
 1. Depress the vent button at the radiator filler cap.
 2. Open the drain plug at the radiator return line tee, located below the engine water pump.
 3. When the coolant has drained, open the bleeder valve on the driver's heater core.
 4. Remove the drain plugs from the suction line, the engine oil cooler, and the air compressor.
 5. To drain only the engine and related components, close the two gate valves and proceed as follows:
 1. Depress the vent button on the radiator filler cap.
 2. Open the radiator filler cap to allow air into the system as the coolant drains.
 3. Remove the drain plug at the radiator return line tee, located below the water pump.

Figure 6-6. Drain Plugs and Coolant Filter.
REFILLING COOLING SYSTEM

To fill the system, close all drain plugs and cocks, open the gate valves and fill the system halfway with a 50-50 mixture of water and ethylene glycol antifreeze. Start the engine and fill the system completely. The cooling system is completely filled when coolant shows approximately halfway up in the surge tank sight glass. See figure 6-8.

When the cooling system is filled to capacity with cold coolant solution, expansion of the coolant takes place as it heats up. During this initial warm-up period it is possible to lose as much as a gallon and a half of coolant. No further coolant loss should be experienced after this period.

CAUTION: Never pour cold coolant into a hot engine. The sudden change in temperature may crack the cylinder head or block.

COOLANT FILTER

A spin-on coolant filter is available as optional equipment. The filter can be reached through the sight glass side engine compartment service door.

The element should be replaced every 500 hours, or 20,000 miles (32,000 km). MCW/TMC recommend the use of Perry Filter PFC-228 (MCW/TMC P/N 6F-8.131) replacement element.

To remove the filter element, close the two shut-off cocks at the filter mounting head and remove the old element. Clean the area around the mounting head and install the new element.

COLD EVEL

For the location of main cooling system components, refer to figure 6-9.
COOLANT RECOVERY SYSTEM (OPTION)

The automatic coolant recovery system limits the loss of overflow coolant. This is accomplished by a coolant recovery tank with a capacity of six U.S. gallons (22.7 liters). The system also includes a coolant pump with electrical controls (figure 6-10), a tell-tale light on the dash, and a tell-tale light and test switch on the remote control box in the engine compartment. Low coolant sensors in the surge tank are also used, in conjunction with the automatic pump controls.

MAINTENANCE

At regular service intervals the operation of the tell-tale light and pump should be checked. Push the fill bulb test switch on the remote control box to the fill bulb test position and be sure that both tell-tale lights illuminate. To check the pump, push the switch to the fill position and ensure that the pump operates. During normal coach operation, if the tell-tale lights are on and the pump is not running, the coolant level in the recovery tank is low and should be replenished.

DRAINING

To drain only the engine and related components close the two gate valves and proceed as follows:
1. Turn the battery switch on.
2. Remove the drain plugs at the radiator return line, located below the engine water pump.
3. As the coolant drains slide the sensor on the surge tank, FLOW WATER tell-tale on the remote control box will come on and the pump will start. When the recovery tank is drained the pump will shut off.
4. Turn the battery switch off.
5. Remove the drain plug from the central heat crossover line, or on coaches equipped with a coolant filter, open the drain cock at the filter.
6. Remove the drain plugs from the suction line, the engine oil cooler, and the air compressor.

NOTE: Descriptions and locations of cooling system drain points were outlined previously in this section. See figures 6-6 and 6-7.

To drain the entire cooling system the gate valves should be left open and the bleeders valve on the driver's heater core should be opened after the coolant has drained.

CAUTION: After draining the cooling system attach a suitable tag to the steering wheel indicating that the cooling system is dry.

REFILLING

On coaches equipped with the coolant recovery system, the cooling system filter tube is located below the remote control panel in the engine compartment. See figure 6-11.

To fill the system, close drain cocks and plug, ensuring that the gate valves are open. If filling the entire system, proceed as follows:
1. Turn the battery switch on. The LOW WATER tell-tale light on the remote control box will come on. If it does not work, check the light using the Fill Bulb Test switch.
2. Add five gallons (18.9 liters) of coolant to the recovery tank. The pump will begin to operate, pumping coolant into the system.
3. Open the petcock on the water bypass tube between the engine thermostats. This will allow air to bleed as the system fills. When coolant begins to flow, close the petcock.
4. When the recovery tank has drained, the pump will shut off.

WATER PUMP SEAL

Engines built prior to January 1987 have water pump seals made of a material which tends to harden at high temperatures. As of that date, Detroit Diesel changed the seal to one made of a material which performs better at high temperatures. The water pump seal should be replaced after it has been in service for 200,000 miles or 6,000 hours.

ALARMSTATS

Two alarmstats activate the warning light and buzzer that indicate engine overheating. See figure 6-12. Further information on the alarmstats can be found in Section 7 of this manual.

RADIATORS

Twin radiators are mounted at the rear corners of the coach (in engine compartment) at a height which minimizes the intake of dust and road dirt.

The radiators are designed to reduce the temperature of the coolant under all operating conditions. It is essential that the radiator cores be kept free from corrosion and debris at all times in conjunction with the regular maintenance of the other components of the cooling system.

Radiator with larger capacity are installed on those coaches with 8V-92TA engines. Refer to specifications at the end of this section for the capacities of the cooling system with standard or larger radiators, or with the coolant recovery system.

RADIATOR SHUTTERS AND SHUTTERSTATS

An air-operated shutter assembly is provided on the intake side of each radiator core. Each shutter assembly is controlled by a separate air cylinder. See figure 6-13. The air supply to the cylinders is controlled by the shutterstat, which is mounted on the right-hand radiator inlet line.

Figure 6-13. Shutter Air Cylinder. The shutterstat controls the supply of compressed air to the radiator shutter air cylinders. It is mounted on the right-hand radiator inlet line and can be reached for service by opening the rear engine compartment service doors. Refer to figure 6-14.

Figure 6-14. Shutterstat. When the engine coolant reaches the temperature of the shutterstat setting, the shutterstat cuts off the air supply to the radiator shutter air cylinder, and the shutters open. When the coolant temperature is below the setting of the shutterstat, air is allowed to enter the radiator shutter air cylinders, closing the shutters.

Figure 6-12. Left and Right Side Alarmstats.
The only maintenance required for the shutterstat is to ensure that the air exhaust hoses are kept free of dirt.

SHUTTERSTAT REMOVAL

Before removing the shutterstat, it is necessary to drain the engine coolant. Refer to Draining Cooling System outlined previously in this section.

1. When the coolant has drained, disconnect the shutterstat air lines and plug or tape them to prevent contamination.
2. Unscrew and remove the shutterstat.
3. The shutterstat is non-serviceable, if it is found to be defective, it should be discarded and replaced.

After replacing the shutterstat, connect the air lines and refill the cooling system. Refer to Refilling Cooling System outlined previously in this section.

SHUTTERSTAT AIR FILTER

The shutterstat air filter is mounted on the inside vertical wall of the right-hand radiator compartment floor pan (Figure 6-16). The filter prevents moisture from entering the air operated components of the blower and shutter air system.

As air enters the filter it strikes the baffle, which diverts any moisture in the air stream to the bottom of the filter housing. The air then passes through two felt filtering elements before flowing to the shutterstat, blower belt adjusting air cylinder.

A periodic check should be made to ensure that there are no air leaks at the filter connections. The filter fluid chamber holds approximately one ounce size mil of fluid. Part of the weekly maintenance procedure should be to drain the filter by opening the draincock at the bottom of the filter body while the filter is under pressure. During cold weather operation, the filter should be drained daily.

At intervals of 3,000 miles (4,800 km) one ounce (28 ml) of Kyrop Air Filter Fluid (P N. 6-10-33) should be added to the filter. Remove the plug on the top of the filter body, add fluid and replace the plug.

At intervals of 10,000 miles (16,000 km) the air filter should be disassembled and the felt cleaned with commercial solvent or replaced. See Figure 6-16. When reassembling the filter, use a new gasket.

BLower Gear Box

The engine cooling blowers are located in a separate compartment above the engine. The blower wheels are mounted on a level gear box which is driven by means of a V-belt from the engine crankshaft. See figure 6-17. Outside air is drawn in through the radiators and discharged by the blower into the engine compartment.

Maintenance for the blower gear box is minimal; it contains a few parts and parts of the daily maintenance procedures should be to inspect the oil level. The correct level is when oil is visible to the halfway point in the sight gauge. Add oil as required in accordance with Section 10 (Lubrication) of this manual.

Make a periodic check of the sealed areas of the gear box to ensure that there is no oil leakage. If any leakage is detected, replace the defective seals or gaskets.

Figure 6-15. Shutterstat Air Filter.

Figure 6-16. Shutterstat Air Filter Parts Breakdown.

Figure 6-17. Cooling System Components in Engine Compartment.
MC-9 MAINTENANCE MANUAL

REMOVAL

The blower gear box and blowers may be removed through the blower compartment door. Remove the drive belt, as outlined under Blow Out Blow Air Cylinder - Removal, and proceed as follows:

1. Remove the capscrews that secure the blower housings to the blower compartment floor.
2. Remove the capscrews that secure the blower gear box to the blower saddle.

NOTE: Two shims are used to align the gear box. When removing the gear box and blower housings, take care not to loss the shims.

3. Remove the gear box and blower housing assembly.

INSTALLATION OF BLOWER GEAR BOX RUBBER MOUNTS

To properly insert the blower gear box rubber mounts into the blower saddle, only water should be used as a lubricant. Insertion of the rubber mounts using glycerin, or any other lubricant, will result in the loss of the mounts falling out causing the rubber to rupture.

Using water as a lubricant will allow the tail of the mount to go into compression when the assembly is drawn up tightly, giving the proper replacement bulge around the entire rubber mount.

In no case should a lubricant be used which maintains lubricty after assembly and engine start-up.

DISASSEMBLY

1. Remove four screws holding down top cover and remove cover and gasket.
2. Remove screws and output shaft covers.
3. Remove the capscrews that fasten the bearing carrier to the housing. The bearing carrier, input shaft, bearings and gears will then come out as a unit.

To disassemble input shaft assembly, remove retaining ring from the inner end at the bevel gear. Pull the gear from the shaft. The bearings and spacer can now be removed from the shaft. Using a soft mallet, tap the output shaft out of the housing. The tapered roller bearings and bevel gear will come out with the shaft. Pull or tap off the bearing cones, slide off the spacers and pull or press off the bevel gear.

Reassembly is the reverse of disassembly. When cover gasket is not available, seal the cover and body with Permatex Silicone Sealant.

REPAIR AND ASSEMBLY

The gears are only supplied in matched, honed sets and must be installed so that the timing marks on the back of the gears are aligned properly.

The back edges of the miter gears must be flush when installed. This can be accomplished by using the proper number of brass shim washers under the output shaft bearing caps. Refer to figures 6-19 and 6-20.

The tapered roller bearings must be adjusted by means of brass shim washers so that there is no perceptible play or clearance in them.

Backlash of the spiral bevel gears is also controlled by the use of brass shims between the bearing carrier and the main housing. 0.003 to 0.004" (0.076 - 0.101 mm) clearance + 0.002" (+0.005 mm) is recommended between gear teeth.

Care must be exercised when installing the shaft seals over the sharp keyways in the shafts. To avoid nicking the inner sealing lip, a thin tapered bushing should be made up to facilitate entry of the shaft in the seal and protect the seal while it is being slid over the keyways.

Figure 6-20. Blower Gear Box Component Parts.

BLOWER BELT AIR CYLINDER

An air operated blower belt adjuster cylinder is installed to ensure the correct tension on the blower gear box drive belt. Access to the cyliner can be gained through the rear engine compartment service doors. See figure 6-21.

ADJUSTMENT

To maintain the correct tension on the blower belt, the air cylinder must be properly adjusted. (With the air system under normal pressure and the pressure regulating valve set at 21 psi (144.8 kPa), the shaft length must be 1.75 ± 0.06 (37.1 mm ± 0.1 mm), as shown in figure 6-21.)

If the shaft is not within these tolerances, adjust the cylinder as follows:

1. Loosen the jam nut on the shaft end of the cylinder.
2. Rotate the shaft to attain the specified length.
3. Tighten the jam nut.

NEW BELTS

When a new blower drive belt is installed, it may be difficult to

Figure 6-21. Belt Air Cylinder Adjustment. At the end of this run-in period the shaft length should be checked and, if necessary, adjusted.
MC-9 MAINTENANCE MANUAL

MAINTENANCE

It is recommended that the blower belt tension air cylinder be lubricated at regular intervals, approximately every 30,000 miles (48,000 km). The recommended procedure is as follows:

1. Remove the belt from the cylinder and apply a few drops of SAE 30 or 40 engine oil into the cylinder. Check for leaks. When overhauling cylinder, it is very important to replace all parts, nuts, bolts and O-rings with new parts for proper operation.

NOTE: When overhauling cylinder new parts should be coated with oil before assembly.

REMOVAL

1. Shut off the air supply to the cylinder by turning the two-way control valve handle (figure 6-22). This will compress the cylinder spring and release the tension on the blower drive belt.
2. Remove the blower drive belt.
3. Remove the capscrew and lock nut that connects the air cylinder rod end to the cross shaft assembly.

NOTE: When removing the capscrew from the rod end, it may be necessary to adjust the two-way control valve in order to relieve the pressure on the capscrew.

Figure 6-22. Blower Belt Air Cylinder.

4. Close the shut-off cock on the shutoff air filter. This will prevent excessive loss of air when the cylinder is removed.
5. Disconnect the two hoses from the air cylinder.
6. Remove the capscrew and nut from the far end of the cylinder and remove the cylinder from the coach.

WARNING: Do not attempt to disassemble the air cylinder while it is in the coach.

DISASSEMBLY

1. Remove the two rods ends and studs from the cylinder. See figure 6-23.

REASSEMBLY

Coat all new parts with SAE 30 or 40 engine oil prior to assembly. Reassemble the internal components in the reverse order of disassembly, and proceed as follows:

1. Place the cylinder on the bed of an arbor press, with the retaining ring up.
2. Slowly bring the ram of the arbor press down on the piston rod until the piston rod approximately 1/8" (3.2 mm) to 3/16" (4.8 mm) below the spring pressure on the piston end plate.

WARNING: Before continuing, lock the arbor press in position and have an assistant maintain the arbor pressure on the piston rod.

1. Release the retaining ring from the cylinder groove using a pair of retaining ring pliers and, if necessary, a small hammer.
2. Grip the air cylinder end plate is under 50-60 lbs. (22.6-27.2 kg) of internal spring pressure. To avoid personal injury, exercise extreme caution during the disassembly of the cylinder.
3. Slowly release the arbor pressure from the piston rod. This will allow the removal of the cylinder end plate from the cylinder.
4. Once the end plate has been removed, the other internal components of the cylinder may be removed for cleaning and inspection.

INSPECTION

1. Inspect all O-rings, packings, nuts and bolts.
2. Inspect the cylinder bore and piston for scoring.
3. Inspect the retaining rings and ensure that they are not bent or otherwise damaged. Replace any parts that are damaged.
4. Check the spring tension to ensure that it is within the tolerances listed under Specifications at the end of this section. If the spring does not meet the specifications, it should be replaced.

NOTE: When inserting the capscrew through the rod end, it may be necessary to adjust the two-way control valve to provide the necessary freeplay for installation.

5. Install the blower drive belt.
6. Turn the two-way control valve ON.
MC-9 MAINTENANCE MANUAL

BLower Dampers - Optional

Each blower assembly is provided with an air-operated damper which operates in conjunction with the radiator shutters to prevent the flow of air during engine warm-up. The dampers are located in the outlet ducts of the blowers. Blower damper linkage adjustment should not be necessary unless the original adjustment is disturbed in disassembly. If an adjustment is to be made, the following method should be followed:

1. Disconnect the air cylinder at damper control lever by removing the clevis pin.
2. Operate the air cylinder so that the ram is fully extended.
3. Hold the damper in the fully closed position, then adjust the clevis until clevis pin holes line up with clevis pin hole in the damper lever.
4. Reconnect the air cylinder to the damper control lever by inserting the clevis pin.
5. Operate the dampers several times to check opening and closing. If dampers are not closing properly, remove clevis pin and unscrew clevis 1/8 turn, reinstall clevis pin, and check closing again; repeat as necessary 1/8 turn per time until dampers are closing with a slight pressure. Worn linkage parts or air cylinders should be replaced.
Lubricate pivot points at regular chassis intervals with rust-preventive oil.

Figure 6-24. Blower Damper Air Cylinder.

SPECIFICATIONS

Cooling System Capacity With:

- Standard Radiators: 23 U.S. Gallons (87.0 liters)
- Larger Radiators: 24 U.S. Gallons (92.7 liters)
- Coolant Recovery System and Standard Radiators: 29 U.S. Gallons (109.7 liters)
- Coolant Recovery System and Larger Radiators: 30 U.S. Gallons (115.4 liters)

Thermostat

- Quantity: 2
- Start to Open: 195°F (91°C)
- Fully Open: 195°F (82°C)

Radiators

- Manufacturer: Young
- Quantity: 2
- Type: Fin & Tube
- Location: Rear, Sides of Coach

Blowers

- Gear Box Ratio: 1:1
- Gears: Spiral Bevel
- Bearings: Tapered Roller
- Gear Backlash: 000° - 004° (0.76 mm - 1.01 mm)
- Backlash Adjustment: Shims
- Number of Fan Blades: 36
- Diameter: 11 1/8 (29.8 cm)
- Rotation: LH - Counterclockwise, RH - Clockwise
- Blower to Housing Side Clearance: 1/8 (6.3 mm)
- Blower Circumference to Housing Clearance: 1/8 (2.5 mm)

Shutterstat

- Manufacturer: Kyser
- Shutterstat Needle Travel: 004° - 005° (1.14 mm - 1.27 mm)
- Part Number: SG-40-2
- Temperature Range: 190°F (87°C)

Alarmstats

- Manufacturer: Kyser
- Part Number: BG-28-7
- Points Set to Close At: 210°F (99°C)
- OR
- Part Number: BG-28-8
- Points Set to Close At: 220°F (104°C)

Temperature Gauge (in engine compartment)

- Manufacturer: Marsh
- Part Number: LR-28-2
- Operating Range: 40°F - 240°F (4°C - 116°C)

Temperature Gauge (on instrument panel)

- Manufacturer: Stewart Warner
- Part Number (Domestic Readings): JK-13-8
- (Metric Readings): JK-13-15
- Operating Range: 100°F - 250°F (38°C - 121°C)
MC-9 MAINTENANCE MANUAL

SPECIFICATIONS CONT'D

BLOWER BELT ADJUSTING AIR CYLINDER
Spring Free Travel ... 6.25" (158.75 mm)
Spring Load at 4.00" (101.6 mm) .. 80 lbs. ± 10% (36.288 kg ± 11%)
Spring Rate per Inch (25.4 mm) 180 lbs. ± 10% (81.848 kg ± 11%)
Piston O.D. Maximum Diameter 1.993" (50.602 mm)
Minimum Diameter .. 1.92" (48.806 mm)
Cylinder I.D. Maximum Diameter 2.00" (50.8 mm)
Minimum Diameter .. 1.996" (50.898 mm)

BLOWER DAMPER AIR CYLINDER
Cylinder I.D. .. 1.75" (44.45 mm)
Travel ... 1.375" (34.925 mm)
Piston Rod Length (From Center of Mounting Hole to Closed Position) 8.25" ± .0625" (208.375 ± 1.5875 mm)

PRESSURE RELIEF VALVE (Surge Tank)
Manufacturer ... A.C. Spark
Part Number ... 6R-8-49
Pressure Setting ... 7 psi (49 kPa)

SERVICE TOOLS

Many of the tools listed in this section are specially designed to meet the needs of various service operations. They are available for purchase through Motor Coach Industries, Service Parts Division, and Universal Coach Parts Co., where practical. May be manufactured by the operator. In these cases, drawings are available upon request.

20-32 Socket — Tightening Water Line Elbows at Engine

20-60 Tool — Sight Gauge Gland Installation & Removal

Figure 6-25. Service Tools.

MC-9 MAINTENANCE MANUAL

SERVICE BULLETINS

Service Bulletins will be issued from time to time to acquaint users with the latest service procedures. The number, date and title of bulletins pertaining to this section should be noted below as soon as received. Bulletins should then be filed for future reference.

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Subject</th>
</tr>
</thead>
</table>

Figure 6-25. Service Tools.